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In this paper, a model for simulating the intrinsic fast dynamics of flow in amultistage, axi-centrifugal compressor

is presented. The model treats the flow through the stage elements, i.e., rotors and stators, as curved stream-tube

elements along themean line. Themodel captures unsteady flow dynamics in respective frames for stators and rotors

of individual stages, alternating between stationary and rotating frames as needed. Accelerations associated with the

rotating frames are represented as body forces. Unique characteristics-based compact interfaces that account for the

transformations between the frames (and also serve as compact loss zones) are used. Simulation results for an

industrial four-stage axial compressor are presented that illustrate the propagation of waves through the compressor

segments as the throttle is moved. In particular, the dynamic processes that can lead a compressor to either of the

opposite ends of its operation, i.e., loss of stability or choked flow, are investigated. Simulation results demonstrate

that the model accounts for the acoustic impedance that is responsible for choked flow. In throttling toward stall, the

simulation results show, as expected, thatwith largeplenum the compressor loses stabilitywhen it is drivenbeyond the

peak of its characteristics. Further, the capabilities of the developed model as a diagnostic tool are demonstrated by

analyzing “pseudomeasured” pressure signals in two possible scenarios of stability loss.

Nomenclature

A = cross-sectional area
Cp = specific heat at constant pressure
CQ = heat source term

e0 = total internal energy
Fdis = dissipation force per unit length
h0 = stagnation enthalpy
M = Mach number
m = mean line
_m = mass flow rate
m = unit vector tangent to mean line
nm = unit vector binormal to mean line
nr = unit vector normal to mean line
p = pressure
R = gas constant r radius
T = temperature
t = time
V = velocity along mean line
α = angle of attack
β = circumferential inclination angle of mean line
γ = specific heat ratio; also radial inclination angle of mean

line
ρ = fluid density
Ω = angular shaft speed

Subscripts

cen = centrifugal

cor = Coriolis
m = along mean line
n = normal to mean line

I. Introduction

M EAN-LINE flow models for design point and off-design
operation performance analysis are common tools in compres-

sor design [1–3]. With advances in computational fluid dynamics
(CFD) over the years, usage of mean-line models is often restricted
to early stages of a design, leaving the detailed design for more
sophisticated CFD tools. However, mean-line flow models offer com-
putational advantage in simulating the fast dynamic of compressible
flow in a compressor, which can become very useful in compressor
design trade studies.
Reduced-order models for dynamic analysis of flow in a compres-

sor, typically, analyze the entire compressor as a lumped object and
use a heuristic force function that “pushes” the flow against adverse
pressure. The force function is obtained indirectly from the compres-
sor characteristics that are obtained from tests, or alternatively,
from CFD analysis. The usefulness of the heuristic force function
approach was well demonstrated by Greitzer [4,5]. The lumped
parameters model studied by Greitzer consisted of a compact pump/
compressor that generated pressure in response to the flow through it.
The compact pump discharged into a cavity that was coupled at the
other end to a plenum, the exit of which was interfaced to the ambient
through a throttle. In this model, fluid in the cavity acted as a lumped
mass, and all the compressible effects took place in the plenum only.
Even with these simplistic assumptions, the model is quite useful in
predicting basic stability criterion, and importantly, it introduces the
well-known B-parameter. Furthermore, using the same force func-
tion approach combined with incompressible flow in the compressor
passages, Moore [6] developed a comprehensive model for the
rotating stall. Thus, it was a natural next step to use the force function
approach and relax the incompressible flow assumption so that
compressibility could be accounted for in the compressor cavity.
Longley [7] developed a novel approach for simulating the moderate

to long length-scale compressible unsteady flowfield within a compres-
sion system. Léonard and Adam [8] formulated the time-dependent
equations of flow through a compressor, and included distributed blade
forces in themomentum equation as a source in the sameway that body
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forcewouldbe accounted for.However, therewere no transient response
results presented in the paper by Léonard and Adam [8]. Dhingra et al.
[9] used a similar approach to examine the possibility of identifying the
stalling stage via the mechanism of compression and expansion waves
that emanate from the stalling stage.
Although the distributed blade force [8,9] described above may

be of some benefit, it cannot properly capture the details of wave
propagation in a compressor. Firstly, the individual stage passages
are not oriented along the compressor shaft axis, rather they are
staggered, and therefore waves propagating along a pure axial
flow would have to “penetrate” through the blades. Furthermore,
the actualMach number in a staggered stage passage is significantly
higher than that of its axial flow component. Finally, it is important
to note that the relative rotation, turning losses, and possible chok-
ing play a key role in determining the acoustic impedance that is
responsible for transmission and reflection of pressure waves at the
interfaces between the rotors and stators. These effects cannot be
simulated with a model that assumes axial flow with distributed
blade forces. In contrast, the approach presented in this paper solves
the compressible flow as it makes its way through the “actual”
passages in the blade cascades, and it accounts for a realistic
acoustic impedance between stators and rotors. Assuming infinitely
thin blades, it turns out that the force extracted through the pressure
on the blade surface is chiefly perpendicular to themean stream line.
Thus, in our approach, no other force, besides retarding forces such
as wall friction, comes into account in the unsteady flow in its
corresponding stream tube. The “push” to the flow appears through
the addition of apparent velocity at the junctions between the rotors
and stators. The approach can be broadly described as presenting
the operation of the compressor in terms of successive diffuserswith
velocity addition at the junctions between the rotors and stators as
illustrated in Fig. 1. Specifically, when we switch between rotating
and stationary frames of reference in our observation of flow, a
lateral velocity U appears in the observer frame of reference,
whereas the axial and radial components of flow velocity as well
as pressure, density, and temperature are unaffected. It is important
to note that the addition of lateral velocity changes the direction of
flow that, in turn, changes the cross-sectional area of the stream tube
such that mass flow rate is continuous through the interface as
illustrated in Fig. 1.
One may wonder if this approach can really capture the actual

dynamics of flow in a compressor. As seen from simulation results
presented in the latter part of the paper, flow accelerates and decel-
erates in response to throttle changes in a “real” fashion as would be
observed during tests, thus establishing that the scheme in Fig. 1 can
be used for simulations of steady and transient behaviors of flow
inside a compressor.
To facilitate a numerical solution of the model shown in the above

scheme, it is required for the numerical scheme to alternate between
rotating and nonrotating frames. This, in turn, requires dynamic
interfaces to serve as boundaries between two computational
domains. To that end, a novel characteristics-based interface frame-
work is developed. Finally, to obtain a realistic model, it is necessary
to calculate the losses associated with extra entropy generation in the
flow process. Losses are mostly governed by complicated 3-D flows
in which kinetic energy of the fluid is converted to heat via internal
dissipation. Therefore, incorporating losses in mean-line models,
which are essentially restricted to 1-D flow, is known to be tricky
and requires a combination of good physical understanding and
correlation with large amount of data such as reported by Lieblein
et al. [10] and Lieblein [11]. The reader will find a good narrative of
this subject in the paper by Smith and Koch [12] and in the IGTI
Scholar lecture by Denton [13]. Both references underscore the

difficulties of modeling losses in transient flow simulations. Denton
emphasizes the advantage of phenomenological loss models that can
capture the global physics of the losses while ignoring the finer
details. It is understood that the challenge involved in loss models
that can be incorporated in a dynamicmodel ismore complexbecause
of the need to incorporate loss terms into the differential equations
rather than accounting for losses over the entire stage. As an example,
the losses due to blade tip leakage can be relatively easily estimated
but are not readily incorporated in the formulation of 1-D unsteady
flow equations. Thus, when 1-D unsteady flow is considered, we
cannot readily apply classical loss formulas such as proposed by
Lieblein et al. [10] and Lieblein [11]. Themethod used to incorporate
different types of losses in our model is described in detail in [14].
Using this method, it is shown in Ref. [14] that the model recovers
measured compressor characteristics accurately over a large range of
speeds. This success formed the basis for its use in the current study of
unsteady flow in a compressor.
At the expense of repetition, we want to highlight that the mean-

line unsteady flowmodel presented in the current work captures the
progression of pressure waves as they travel through the staggered
conduits formed by the blade cascade passages during transients
including stall and choke. This is in contrast to the models devel-
oped in [8,9], which considered axial flow with distributed body
forces representing the axial component of blade aerodynamic
forces. The model implementation requires alternating between
stationary and rotating frames across stages, which, in turn, requires
interfaces between computational domains. To that end, a novel
treatment of the corresponding interfaces between blade rows has
been developed.
The remainder of the paper is organized as follows: First, we

provide details of the model development followed by a description
of the numerical scheme used for simulation. Then, we present
simulation results illustrating details of the wave dynamics through
the compressor as a mechanical throttle is used to vary the flow rate
through the compressor, particularly as the system is throttled into a
stall or a choke condition. At the end, we provide a list of con-
clusions that are drawn from the results presented.

II. Mean-Line Construction and Flow Equations

A. Mean-Line Considerations

We consider mean-line m (m-line), which is the trajectory of the
bulk flow through a stream-tube element defined by the passage
between two blades.We consider axisymmetric flow geometry; thus,
the mean-line trajectory lies on a surface of revolution. At each point
on the trajectory, we position a plane that is tangent to the surface, and
another plane that contains the axis of rotation (the spool axis). An
overlay of these radial planes would yield collections of points like
the dotted line shown in Fig. 2. Note that each point is located at a
distance r from the rotation axis. The orientation of the unit vector at a
point along the mean line is defined by two successive rotations, the
first rotation about k by the radial inclination angle γ and the second
rotation about j 0 by the circumferential inclination angle β, as shown
in Fig. 2.Additionally, a point along themean line is associatedwith a
cross-sectional area A, which represents the area of the surrounding
stream tube, and a characteristic width b, which represents the shape
factor of the surrounding stream tube. We now derive the equation of
the m-line as follows.
First, consider the radial plane that contains a point on the mean

line, the plane consisting of the rotation axis x and radial coordinate y
with corresponding unit vectors i and j, respectively. The z direction
with corresponding unit vector k, according to the right-hand rule, is
pointing outward perpendicular to the xy plane. Next, we consider a

Fig. 1 Flow schematic showing multistage axial compressor modeled as successive diffusers with velocity addition junctions.
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plane tangent to the surface of revolution that contains the saidmean-

line point of the m-line whose unit vectors are i 0, j 0, and k 0, and its

area vectornr is, thus, projected on the corresponding plane xy and is
tilted by the angle γ from the radial axis y. Note that when γ � 0,
i 0 � i, j 0 � j, andk 0 � k.We now consider the unit vectorm that is

tangent to the linem at the corresponding point and lies on the plane

i 0k 0 at an angle equal to the circumferential inclination angle β. This
vector overlaid on the trace ofm is shown in the bottom part of Fig. 2

at two locations (shown as points P andQ) along the axial-centrifugal

compressor: point P represents mostly axial flow corresponding to an

axial stage, and point Q represents mixed axial-radial flow corre-

sponding to a centrifugal stage.
From Fig. 2, we can represent m in terms of i 0 and k 0 as

m � cos βi 0 − sin βk 0 (1)

Since the vector j 0 is normal to m, we can thus calculate the third

vector in the streamline system nm � m × j 0, which gives

nm � sin βi 0 � cos βk 0 (2)

Further, it can be easily observed that

i 0 � cos γ i� sin γ j

j 0 � − sin γ i� cos γ j

k 0 � k (3)

Substituting Eq. (3) into Eqs. (1) and (2) gives

m � cos β cos γ i� cos β sin γ j − sin β k

nm � sin β cos γ i� sin β sin γ j� cos β k (4)

It can be verified that the magnitude of each unit vectorsm and nm is

unity.

jmj �
��������������������������������������������������������������������
cos2βcos2γ � cos2βsin2γ � sin2β

q
� 1

jnmj �
�������������������������������������������������������������������
sin2βcos2γ � sin2βsin2γ � cos2β

q
� 1 (5)

Now, let us scale the mean-line unit vector m by multiplying both

sides of Eq. (4) by dm, and denote dm m � dm.

dm � cos β cos γdm i� cos β sin γdm j − sin βdm k (6)

On the other hand, we can also represent mean-line differential vector

in terms of Cartesian variables:

dm � dx i� dy j� dz k (7)

Comparing Eqs. (6) and (7) and noting that dy � dr, we get

dm � dx

cos β cos γ

dm � dr

cos β sin γ
(8)

In the axial part, where the angle γ is close or equal to zero, we
express everything as a function of x, namely, r�x�, γ�x�, and β�x�,
and we use the formula from the upper part of Eq. (8). In the radial
part, where γ approaches 90 deg, we replace x by r as the indepen-
dent variable such that x�r�, γ�r�, and β�r�, and we use the formula
from the lower part of Eq. (8). The angle γ � 45 deg is chosen as
the switching inclination angle. After integrating Eq. (8), we can
determine the geometrical variables as functions of m, namely,
r�m�, γ�m�, and β�m�, which with the corresponding mean-line
area A�m� can be used in the formulation of the mean-line flow
equations as shown next.

B. Flow Governing Equations

In some sections of the compressor, the m-line is attached to a
stationary row (inlet duct, inlet guide vanes, stator, diffuser sec-
tion), and in other sections, it is in a noninertial rotating frame
attached to the rotor. The rotating frame introduces inertial forces
on fluid particles, namely, the centrifugal force and Coriolis force.
The centripetal acceleration is in the direction of −j and its

magnitude is Ω2r.
The force components per unit mass along and normalto m are

given by

Fcen;m � Ω2rj ⋅m � Ω2r cos β sin γ

Fcen;nm
� Ω2rj ⋅ nm � Ω2r sin β sin γ (9)

The Coriolis force per unit mass is given by

FCor � −2Ω ×V � −2ΩV�i ×m� � −2ΩV�sinβj� cosβ sin γk�
(10)

where V is the magnitude of flow velocity along the mean line.
The cross product Ω × V implies that the resultant force is
perpendicular to both Ω and V. Since V is oriented along m, the
Coriolis force has no component along m. The component normal
to m along nm is

Fcor;nm
� −2ΩV sin γ (11)

Note that the Coriolis effect is null when γ � 0 and is maximum in
pure radial flow when γ � 90 deg.
We now apply the conservation laws with source terms to obtain

the governing equations.
Continuity:

∂�ρA�
∂t

� ∂�ρVA�
∂m

� 0 (12)

Energy:

∂�ρe0A�
∂t

� ∂�ρVh0A�
∂m

� ρVAΩ2r cos β sin γ − CQ (13)

Momentum along the mean line:

∂�ρVA�
∂t

� ∂�ρV2A�
∂m

� −A
∂p
∂m

� ρAΩ2r cos β sin γ − Fdis (14)

whereCQ represents the heat loss due to cooling,Fdis is a dissipating
force source term that brings into effect the distributed losses due to

Fig. 2 Geometric and vector notation.
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wall friction aswell as tip leak and other sources,¶Ω is the compressor
shaft angular speed, γ is the radial inclination ofmean line, and e0 and
h0 are total energy and stagnation enthalpy, respectively, defined as

e0 �
p

ρ�γ − 1� �
1

2
V2

h0 � h� 1

2
V2 (15)

In addition to the above equations, we also use the perfect gas law to
relate the thermodynamic variables

p � ρRT (16)

Equations (12–16) are applicable to any configuration that is encoun-
tered in a compressor, be it pure axial, centrifugal, or mixed axial-
centrifugal.
Considering now the energy equation without time derivatives and

assuming no heat losses, we get

∂�ρVh0A�
∂m

� ρVAΩ2r cos β sin γ (17)

Equation (17) shows that in an adiabatic pure axial stage where γ �
0 deg (i.e., the radius of the mean line is constant), the total enthalpy
(as measured in the corresponding stage relative frame of reference)
is constant along the stage, i.e.,

ρVh0A � constant (18)

On the other hand, in a radial impeller where γ � 90 deg, there is a
total enthalpy increase as a result of the work done by the centrifugal
forces. For the four-stage axial compressor considered for transient
simulations in this study, we take the mean-line radial inclination
angle γ to be zero, thus having no contribution from the centrifugal
force source terms.
The formulation of the flow Eqs. (12–14) assumes that the observer

is fixed to the corresponding blade row, thus making the observer
stationarywith respect to the flowpath. This approachworks as long as
we transform the flow variables correctly when we switch between
rotating and nonrotating frames of reference. The validity of this
approach is undisputed as rotating frames of reference are routinely
used in the development of flow equations, and the simplicity it brings
to the flow equations is evident. However, this very simplification can
be a potential source for confusion. One may find it hard to grasp the
disappearance of the aerodynamic force terms in the momentum
equation, as seen from Eq. (14). Further, as there is no inclusion of
work done by aerodynamic force in the energy equation [see Eq. (13)],
the total enthalpy in the blade row channel does not change. This begs
the following question: How the increase in the flow enthalpy between
the inlet and the outlet is accounted for in the current model?
The answer to the latter question is that a change in enthalpy appears

as a jump when we switch between reference systems due to the
apparent velocity addition. As we switch back, there is another jump,
and the net difference between the jumps provides a change in total
enthalpy. Thus, for an observermovingwith the conduit flow, enthalpy
along the compressor appears to increase in steps. If we transform the
calculated flow variables to the inertial system, we will notice that the
calculated enthalpy increases gradually along the compressor.
The first question concerning the disappearance of the aerody-

namic force term from the momentum equation can be elucidated
using the go-through assumption that is often used to explain the
modal rotating stall [15] as follows: Consider a 1-D axial flow in a
compressor with constant area cavity modeled as parallel straight
stream tubes extending along the compressor cavity, interrupted at

various locations by a compact blade section representing a rotor or a
stator. The go-through assumption suggests that the flow entering a
blade rowgoes straight through it, but gains or loses pressure due to the
action of aerodynamic forces from the blades. In this case, themomen-
tumbalance of the stream tubemust contain a force term that pertains to
the aerodynamic force from the blades, which is responsible for the
pressure increase along the compressor. Note that blades are located at
discrete points along the flowpath.Thus, as one followsa stream line, a
pulse of force appears in themomentumequation at the pointwhere the
streamline “goes through” the blade actuator, with no forces appearing
at points in between the blades. In contrast, in the curved mean-line
modeling approach pursued in this work, there are no intersections
with the blades, and thus, there is no force term along the flow path. It
should be noted, however, that there is a force term in the momentum
equation in the lateral direction. This force “causes” the flow to follow
the conduit between the blades. This auxiliary equation is not needed
for our solution of the flow; it can be solved to obtain the aerodynamic
blade forces that are required for the conduit flow.
Yet, another point that may be a source of confusion is the con-

tinuity of mass flow rate across the transformations. The velocity
addition at the interfaces of blade rows gives the false notion that
mass sources are introduced. As we switch between rotating frames,
the flow properties such as density ρ, pressure p, and temperature T
do not change. However, the flow velocity V is changed due to blade
rotation when viewed by an observer in the rotating frame. However,
a geometrical consideration of the resulting curved stream tube
implies that the cross-sectional area A of the stream tube jumps as
well in such a way that it keeps the mass flow rate ρVA continuous
when we switch between rotating and nonrotating frames. This jump
in the area is depicted schematically in Fig. 1.

C. Steady-State Model Highlights

The validity of our model simulations is based on the premise that
steady-state solutions of the model correlate well with the real
characteristics of the simulated compressor. With this premise being
a necessary condition for this work, we bring below, for the benefit of
the reader, some highlights from [14], which includes a detailed
description of steady-state solutions of the model and correlations
with the measured data for an industrial four-stage axial compressor.

1. Losses Consideration

When flow enters a stage with zero incident angle, it follows the
mean line all along. However, when significant incident angle devel-
ops, flow is forced to turn sharply at the entrance to the blade cascade
passage before it is realigned with the mean line of the cascade. This
turning is treated in the model as an abrupt expansion (positive
incidence) or contraction (negative incidence) in the stream tube area,
as shown in Fig. 3. This source of lossesmay be somewhat pessimistic

Fig. 3 Flow entering the blade row at positive angle of attack shown as
sudden expansion (top figure), whereas the stream entering at negative
angle of attack is represented as sudden contraction (bottom figure).

¶One may wonder why the term Fdis does not have a contribution to the
energy equation. Indeed, dissipative forces do not appear in the energy
equation; see, for example, the derivation of Fanno flow equations. A full
discussion of this subject is important on its own, but it is beyond the scope of
the current paper.
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at low angles of attacks, but our results in [14] suggest that this model
provides reasonable estimates of losses at larger angles of attack. Other
losses such as tip leak and boundary-layer viscous effects are included
using the term Fdis in the momentum equation [see Eq. (14)].

2. Flow Deviation Consideration

The essence of deviation can be understood by comparing a
cascade flow when blades are far from each other (low solidity) to
a cascade flow where the blades are very close, thus forming a tight
conduit (high solidity). In the first case, flow changes direction only
in the vicinity of the blades, leaving the bulk flow to continue in its
upstream direction. In this case, the bulk flow deviates from the
orientation of the blade. In the latter case, flow is forced to follow
the conduit direction with little deviation. It is thus expected that the
deviation of the bulk flow is an inverse function of solidity. Further
details on how flow deviation is accounted for in the current model
can be found in [14].

3. Steady-State Model Correlations

A comparison of the steady-state model predictions with the
measured data for an industrial four-stage axial compressor is shown
in Fig. 4, which is taken from [14]. The same set of parameters used
for calibration of the steady-state model in [14] is used for unsteady
flow simulations in the current paper.

III. Numerical Solution and the Dynamic Compact
Interfaces

A. Numerical Scheme

We consider the system of partial differential equations (PDEs)
given in Eqs. (12–14) in a canonical conservative form:

∂U
∂t

� ∂F�U�
∂m

� Q�U� (19)

where

U �

2
64

ρA

ρVA

ρe0A

3
75; F �

2
64

ρVA

ρV2A� pA

ρVh0A

3
75;

Q �

2
64

0

p ∂A
∂m � ρAΩ2r cos β sin γ − Fdis

ρVAΩ2r cos β sin γ − CQ

3
75

Riemann solvers that follow the eigenvalues or characteristic
velocities of the flow equations and the corresponding eigenvec-

tors are naturally suitable for the solution of Eq. (19). However,

due to the inherent complexities of the iterative procedure required

for finding the eigenvectors, approximate Riemann solvers such as

Roe andHarten-Lax-van Leer (HLL) solvers becamemore popular

[16]. Roe solver is very robust and has high resolution near shock

discontinuities. Modifications to the Roe scheme for inclusion of

source terms were established by Mohanraj et al. [17]. Still, find-

ing the eigenvectors of the linearized Jacobian matrix involves

significant computational effort. In contrast, Riemann-solver-free

central schemes that rely on flux updates directly in terms of

physical fluxes are straightforward, and thus are computationally

alluring. The first stable such central scheme was introduced by

Lax [18], but it had a low resolution. Significant modifications by

Kurganov and Tadmor (KT) second-order accuracy scheme [19]

enabled high resolution, while keeping the advantages of simplic-

ity and computational efficiency of the central scheme. The so-

called second-order KT scheme can be used in fully discrete form,

that is, converting the PDEs directly into algebraic equations, or

semidiscrete form in which the PDEs are first converted into

ordinary differential equations (ODEs), which are subsequently

integrated. In our numerical scheme, we follow the latter approach.

We provide a brief description of the numerical scheme below.
The semidiscretized form of the conservation law using central

differencing can be expressed as

∂Uj

∂t
� −

Hj�1∕2 −Hj−1∕2

Δmj;c

�Q�Uj� (20)

with the spatial grid size calculated using central differences:

Δmj;c �
mj�1 −mj−1

2

The “numerical flux” H that replaces the “physical flux” F is

calculated as follows:

Hj�1∕2�
1

2

�
F
�
U�

j�1∕2

�
�F

�
U−

j�1∕2

��
−
aj�1∕2

2

�
U�

j�1∕2−U−
j�1∕2

�
(21)

with the corresponding termHj−1∕2 calculated similarly by replacing

j� 1∕2 with j − 1∕2 in Eq. (21) and aj�1∕2 is the maximum local

wave speed given by

aj�1∕2 � max
n��V�

j�1∕2 � c�j�1∕2

��; ��V�
j�1∕2 − c�j�1∕2

��; ��V−
j�1∕2

� c−j�1∕2

��; ��V−
j�1∕2 − c−j�1∕2

��o (22)

Fig. 4 Measured and predicted pressure ratios and efficiencies at various compressor speeds.
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In the above, the “right” � ��j��1∕2� and the “left” � �−j��1∕2� operators of
any of the grid variables Yj (e.g., Uj, Vj) are linearly reconstructed

variables at j� 1∕2 location corresponding to j� 1th and jth cells,
respectively, as shown below:

Y�
j��1∕2� � Yj�1 − Sj�1

Δmj�1;c

2

Y−
j��1∕2� � Yj � Sj

Δmj;c

2
(23)

in which the derivatives Sj�1 and Sj are determined with minmod

limiter of van Leer’s one-parameter family.

Sj � minmod

�
θ
Yj − Yj−1

mj −mj−1
;
Yj�1 − Yj−1

mj�1 −mj−1
; θ

Yj�1 − Yj

mj�1 −mj

�
;

where θ ∈ �1; 2� (24)

The minmod operator returns the term with minimum magnitude
along with its sign if all terms have the same sign, and returns zero
otherwise. θ is the dissipation parameter, and can be varied from 1 to
2. When θ � 1, and assuming that all terms share the same sign, the
minmod chooses the least amplitude derivative resulting in damping
of the spurious oscillations, but enhancing numerical diffusion. With
larger values of θ, the minmod delivers a derivative larger in magni-
tude than the minimum, but always lesser in magnitude than that
based upon the central difference. This in turn lessens the numerical
damping, bounded by the least diffusive central difference term.
After explicit calculation of the flux and the source terms at each

time step, we integrate the semidiscrete formulation, i.e., Eq. (20),
using a modified Euler’s method. Denoting the right-hand side
of Eq. (20) at jth location and nth time as J�Un

j �, the modified Euler’s
method involves predictor–corrector steps similar to the first-order
Euler’s method, where the conservative variable Uj at tn � Δt is
calculated by averaging its value at the end of the two steps.

U�
j � Un

j � Δt ⋅ J�Un
j � �Predictor�

U��
j � U�

j � Δt ⋅ J�U�
j � �Corrector�

Un�1
j � 0.5 ⋅ �Un

j �U��
j � �Averaging� (25)

The above integration strategy, being second-order accurate in time,
makes the overall numerical scheme second-order accurate in both
space and time. It follows fromEqs. (20–24) that, for updating a grid
node in time, information at two upstream and two downstream
nodes is required. Thus, the central-difference-based numerical
scheme can be implemented only at the so-called internal nodes
that are not on the rotor–stator interfaces or the external boundaries
with the ambient. At points adjacent to interfaces and boundaries,
we replace the KT scheme with the three-point central difference
Lax–Friedrichs (LxF) scheme, which in semidiscretized form can
be written as

∂Uj

∂t
� −

Hj�1 −Hj−1

2Δmj;c

�Q�Uj� (26)

The numerical fluxH in this case is same as the physical flux F and

does not require any reconstruction step, which implies that

Hj�1 � F�Uj�1�
Hj−1 � F�Uj−1� (27)

On the boundary node itself, the LxF scheme is replaced by one-

sided two-points gradient that is part of the boundary scheme

explained below.

B. Compact Interface Elements and External Boundaries

The partial differential Eqs. (12–14) governing the flow dynamics

inside a compressor are applied within the computational domains of

rotors and stators. Between each of two domains, an interface is

required to accommodate frame transformation, shock waves, turn-

ing losses, and other losses such as mixing losses. Additionally, the

interface between the blade rows accommodates for bleed from the

compressor. The theory and implementation of this interface is

described below.

1. Characteristics Methods

There are three characteristic velocities associated with one-

dimensional Euler equations:

λ1 � V − c

λ2 � V

λ3 � V � c (28)

Corresponding to the three velocities are three waves, as shown in

Fig. 5, whose amplitudes can be calculated using the following

relations:

L1 � λ1

�
∂p
∂m

− ρc
∂V
∂m

�

L2 � λ2

�
c2

∂ρ
∂m

−
∂p
∂m

�

L3 � λ3

�
∂p
∂m

� ρc
∂V
∂m

�
(29)

Note that, in case of supersonic flow, all characteristics point along

the same direction. With the above definitions, Euler equations

including stream tube area variation and source terms assume the

following form:

∂
∂t
�ρA� � −�ρV� ∂A

∂m
−

A

c2

�
L2 �

1

2
�L1 � L3�

�
(30)

∂
∂t
�ρVA� � −�ρV2� ∂A

∂m
−

A

c2

�
λ2L2 �

1

2
�λ1L1 � λ3L3�

�
� �ρAΩ2r cos β sin γ� − Cf�ρV2b� (31)

Fig. 5 Direction of characteristic waves at the domain boundaries.
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∂
∂t
�ρe0A� � −�ρVe0�

∂A
∂m

−
A

2

0
BBB@

L1

λ1

�
γV−c
γ−1 � 1

2
V2

c2
�V − 3c�

�
� L2

λ2
V3

c2

� L3

λ3

�
γV�c
γ−1 � 1

2
V2

c2
�V � 3c�

�
1
CCCA

� �ρVAΩ2r cosβ sin γ�−CQ (32)

Poinsot and Lele [20] established a boundary condition scheme

based on characteristics to obtain explicit algebraic connections

between the characteristics in specific boundaries. To meet the

challenges associated with our problem, however, we need to define

the problem in quite general terms that should be implementable in

any possible scenario, while entirely independent of the numerical

scheme that is used in the internal points of the computational

domain.

2. Interdomain Interface

As already noted, the flow transformation between two neighbor-

ing elements, say, rotor 1 and stator 1, does require not only change

of frame, but also the inclusion of shock wave losses and more.

Thus, the transformation over the interface is highly nonlinear.

However, it turns out that a straightforward method can be devised

to solve any transformation regardless of its complexity. Toward

that end, consider an interface at grid point N as shown in Fig. 5.
Following Poinsot and Lele [20], we calculate the characteristics

that are coming from the domain based on one-sided spatial deriva-

tives and use these to determine the characteristics that enter the

domain. The algorithm for this process proceeds along the follow-

ing steps:
1) CalculateL2N U

,L3N U
, andL1N D

from Eqs. (28) and (29) using
one-sided gradients.
2) Guess a value for L1N U

(alternatively, one may select the
previous value of L1N U

).

3) Find the time derivatives of the upstream state variables
�∂∕∂t��ρA�NU, �∂∕∂t��ρVA�NU, and �∂∕∂t��ρe0A�NU by substituting
the values of L1N U

, L2N U
, and L3N U

from steps 1 and 2 in

Eqs. (30–32).
4) Integrate �∂∕∂t��ρA�NU, �∂∕∂t��ρVA�NU, and �∂∕∂t��ρe0A�NU

from step 3 in time to obtain estimates of the upstream states for
the next time step, i.e., �ρA�NU�t� Δt�, �ρVA�NU�t� Δt�, and
�ρe0A�NU�t� Δt�.
5) Calculate the reference frame transformation, including bleed

and losses to obtain downstream state variables �ρA�ND, �ρVA�ND,
and �ρe0A�ND at t� Δt.
6) Subtract current downstream state variables from their estimated

values at t� Δt from step 5 and divide byΔt to obtain �∂∕∂t��ρA�ND,
�∂∕∂t��ρVA�ND, and �∂∕∂t��ρe0A�ND.
7) Solve Eqs. (30–32) for L1ND

; L2ND
, and L3ND

, using
�∂∕∂t��ρA�ND, �∂∕∂t��ρVA�ND, and �∂∕∂t��ρe0A�ND from step 6.
8) Compare the calculated L1N D

from step 7 with its known value
obtained in step 1, and correct the guess on L1N U

in step 2 using the

Newton–Raphson or a bisection method.
9) Go to step 3 and iterate the process until convergence is

achieved.

3. Inlet Boundary Compact Interface

The inlet to the computational domainmay be isentropic ormay be

prefaced by a compact module that accounts for inlet shock waves

during high speed operations, or losses due to flow distortion from

screens that are often installed at the compressor inlet during static

tests. These effects are assumed to be accounted for by an inlet

compact interface module (ICIM) that interfaces the first grid point

of the computational domain with the ambient. Note that the ambient

stagnation conditions just ahead of the ICIM are known at all times

though they are not necessarily constant. The following iterative

procedure describes the solution process for the inlet boundary:
1) Calculate L1I

from Eqs. (28) and (29) using the one-sided
gradient.

2) Guess a value for Mach number just ahead of the ICIM for the
next time step t� Δt (alternatively, one can use its value from the
previous time step).
3) Assuming isentropic flow upstream of the ICIM, calculate

pressure, temperature, density, and velocity at the upstream end of
the ICIM at t� Δt based on the known ambient stagnation condi-
tions and the assumed Mach number in step 2.
4) Calculate values for ρA, ρVA, and ρe0A at the downstream end

of the ICIM at t� Δt using the ICIM “transfer function.” In this
paper, the transfer function of the ICIM is set to unity, representing a
lossless inlet.
5) Subtract the previous states ρA, ρVA, and ρe0A at time t from the

computed values at time t� Δt from step 4, and divide the difference
by Δt to obtain the values of the time derivatives �∂∕∂t��ρA�I,
�∂∕∂t��ρVA�I , and �∂∕∂t��ρe0A�I at the downstream end of
the ICIM.
6) Solve Eqs. (30–32) for L1I

; L2I
, and L3I

, using �∂∕∂t��ρA�I ,
�∂∕∂t��ρVA�I , and �∂∕∂t��ρe0A�I from step 5.
7) Compare the calculated L1I

from step 6 with its known value
obtained in step 1, and correct the guess on Mach number made in
step 2 using the Newton–Raphson or a bisection method.
8) Go to step 3 and iterate the process until convergence is

achieved.

4. Exit Boundary Compact Interface

Similar to the ICIM in the inlet, we include an exit compact

interface module (ECIM) at the exit of the computational domain.

There are several types of exit conditions that the ECIMmay accom-

modate. To name a few,wemay have i) a hard terminationwhere flow

velocity vanishes at the exit boundary, ii) anechoic termination with

no reflection of waves at the exit boundary, iii) discharge into a large

plenum, and iv) discharge through a throttle. Each of these cases

requires a different formulation of the ECIM transfer function. As an

example,we consider here two exit conditions. The first has a lumped

plenum coupled to the exit of the computational domain with the

plenum pressure ppl forcing the static pressure at the exit of the

computational domain. The time derivative of the plenum pressure
_ppl is calculated from a separate set of equations that account for the

net balance of mass flux and energy flux into and out of the plenum.

The second example of exit condition is a compact throttle with area

Ath < AeAth < A e discharging to the ambient. The following itera-

tive procedure describes the solution process for the compact inter-

face at the exit boundary:
1) Calculate L2o

and L3o
from Eqs. (28) and (29) using one-sided

gradients.
2) Guess a value forL1o

(alternatively, one may select the previous
value of L1o

).

3) Insert the values of L1o
; L2o

, and L3o
from steps 1 and 2 in

Eqs. (30–32) to calculate the time derivatives of the states
�∂∕∂t��ρA�o, �∂∕∂t��ρVA�o, and �∂∕∂t��ρe0A�o.
4) For the lumped plenum case, use the time derivatives of the

states from step 3 to calculate the time derivative of the pressure ( _pe�
and compare it to the time derivative of the plenum pressure � _ppl�.
The difference between _ppl and _pe forms the error to be driven toward

zero through the iterative process. In the case of a throttle, we first
calculate the pressure andMach number at the throttle opening using
isentropic acceleration from the exit Ae to the smaller area Ath of the
throttle. The boundary condition requires that either the static pres-
sure at the throttle equals the ambient pressure, or else the Mach
number at the throttle opening Ath equals 1; the latter implies a
choked throttle.
5) Using the error from step 4, obtain a new guess for L1o

in step 2
using the Newton–Raphson or a bisection method.
6) Go to step 3 and iterate the process until convergence is

achieved.

C. Results and Discussion

In this section, we present unsteady flow simulations for an

industrial four-stage axial compression system considered in [14].
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A sketch of the geometry of the simulated compressor is shown
in Fig. 6.
In the nominal configuration, stator 4 discharges into a plenum that

is interfaced to the ambient through a throttle. With the plenum, the
B-parameter is calculated to be roughly 0.94. We also consider the
casewhere throttle is connected to the exit of stator 4 via a short duct;
however, due to brevity, these results are not discussed here. As such,
all results presented in this paper are with a plenum, and they include
transitions to choke as well as stall.
The inclusion of a “large” plenum in a 1-D scheme may be done in

twoways. If the plenum has large-enough ratio of length-to-flow area,
it can be included as part of thewaveguide passages in the schemewith
proper interface to the compressor on one side and throttle on the other
side. Otherwise, the plenum can be evaluated as a lumped volume in
which velocity is negligible and pressure is uniform throughout the
volume. In the results shown below, the first approach is taken; thus
wave propagations inside the plenum are present.

1. Stability of the Numerical Scheme and Mass Conservation Consider-

ations

As already discussed, the KT scheme employs two grid points
ahead and two grid points behind the center point. This scheme, thus,
cannot be employed at grid points that are at or next to interfaces.
Hence,we switch to an alternate scheme as the simulation approaches
one of the interfaces; note that there are two interfaces for each
compact zone and one interface each at the inlet or exit of the system.
As already noted, at the grid point next to an interfacewe switch to the
three-point central difference LxF scheme [see Eq. (26)] that uses the
interface grid point as the front (rear) point. At the interface grid
point, we use the one-sided backward (forward) gradient. Although
changing schemes near the interfaces did not give rise to any numeri-
cal stability issues in our simulations, we observed spurious spatial
oscillations at grid points near the interface boundaries in some of the
cases. While such oscillations were observed to die out within a few
grid points, we noticed small residual imbalances in the mass flux
across some of the interface boundaries. However, we found the
overall mass flux imbalance to be negligibly small in all the cases
considered in this study.

2. Grid Resolution Considerations

In our estimation of error due to grid spacing, we have chosen to
run the simulation code at conditions of deep choke when multiple
shock waves develop in the rotors. Table 1 shows the computed

values of the normalized exit pressure ratio �PR obtained from simu-
lations for different values of grid spacing along themean line,Δm, in
millimeters.
It is expected that computational error varies monotonically as an

exponent of grid spacing.Hence, in order to estimate percentage error
in the computed normalized exist pressure ratio for a selected value of
the grid spacing, we assume a model for the estimated normalized

pressure ratio �c�PR� as a function of the grid spacing as

c�PR�Δm� � �PRΔm→0 � K�Δm�ε (33)

where �PRΔm→0 is the “computationally correct” value of the normal-
ized pressure ratio as grid spacingΔm → 0, which is unknown at this

point. Also, K and ε in Eq. (33) are unknown parameters to be
determined. We have used the least-square method to fit the Table 1
data to Eq. (33) and estimated the values of unknown parameters

as �PRΔm→0 � 0.94385, K � 0.06723, and ε � 0.79209. Next, we
obtain an estimate of the error for a selected value of grid spacingΔm.

Ê�Δm� �
�PR�Δm� − �PRΔm→0

�PRΔm→0

(34)

A plot of Eq. (34) is shown in Fig. 7 using the estimated parameter
values of Eq. (33). The error estimates for the data in Table 1 are also
superimposed as square symbols in Fig. 7. All the results using the
unsteady simulation code included in this paper are with the grid
spacing Δm of 0.2 mm, which, from Fig. 7, corresponds to an
estimated error of roughly 2%.

3. Throttling into Choke

Figure 8 shows the progression from an initial stable point toward
and into the choked branch. The initialization state for simulation
corresponding to the steady-state points shown in this figure, as well
as those shown in other figures latter, is calculated using an initial-
ization routine briefly described below.
In the initializer routine, a flow rate is set and the pressure dis-

tribution along the compressor is calculated. The required throttle
area is calculated as part of the initializer routine. The calculated flow
spatial distribution and throttle opening are subsequently used as the
initial condition in the timemarching scheme. After an initial settling

Table 1 Exit pressure ratio
for different values of grid spacing

Grid spacing,
Δm �mm�

Normalized exit
pressure ratio, PR

0.8 1.0
0.4 0.9773
0.2 0.9614
0.1 0.9553

Fig. 7 Estimated error for different values of grid spacing.

Fig. 6 Geometry of the simulated compressor.
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time in which any small deviations from the calculated steady state

are settled, the throttle is switched to a 2% area increase followed by
another settling period. This process is repeated three times. Points 1
and 2 in Fig. 8 are on the part of the characteristics inwhich the flow is

not choked at any location along the compressor; points 3 and 4 in
Fig. 8 are on the choked branch where one or more stages experience

choking conditions. The time traces of the mass flow rate at the inlet
and exit show that, for each throttle change, the mass flow rate at the

throttle surges up and subsequently settles down, whereas the flow
rate at the inlet grows gradually, eventually matching the flow rate at

the exit. For the switch from point 3 to point 4, the flow at the inlet
experiences no change and the flow at the exit overshoots initially, but

eventually settles to the flow rate of the previous throttle setting,
indicative of a choked state.
We now look into the details of the wave structure in the plenum

and the compressor section. The area ratio of the plenum to the

compressor exit is about 13:1, large enough to represent a near-solid
wall to waves impinging from the plenum side and an open end for

waves approaching from the compressor side. Also, the choked
throttle at the plenum exit is nearly a solid termination for the

impinging waves. The low Mach number and the combination of
temperature and length in the plenum imply that about 2/3 of a

millisecond is needed for a wave, moving at the speed of sound, to
traverse the plenum in each direction. However, once thewave enters

the compressor from the back, it is significantly slowed down by the
opposing mean flow velocity in the compressor passages so that it

takes about 3ms for awave to traverse the distance from the throttle to
the inlet.
To be able to follow the relatively small variations in the pressure

and flow rate that follow the throttle switch, we show the incremental

difference from the previous steady state. This should be kept inmind
while reviewing the following figures. Accordingly, at t � 0 ms the
blue line is uniformly at zero.
Figure 9 shows the wave formation dynamics following the first

millisecond after the throttle is stepped from 1 to 2. It shows a steep
expansion wave moving from the throttle to the left and reaching the

interface with the compressor in about 0.75 ms. The impinging
expansion wave is partially reflected as an expansion wave and

partially transmitted into the compressor. Because of the high area
ratio, the reflection is almost full as evident by the near doubling of

the amplitude of the reflected wave. Note that the transmitted pres-
sure wave has essentially the same amplitude as the reflected wave.
Figure 10 shows snapshots sequence during 0–5 ms of the spatial

distributions of flow rate and static pressure, immediately following

the throttle switch from point 1 to point 2 toward choke. As already
shown for the duration of 1 ms after the switch, the red line corre-

sponding to t � 1 ms shows that the expansion wave that originated
at the throttle opening and caused a rush of flow at the exit has moved

through the plenum into the compressor, and partially reflected as an

expansion wave that has already traveled half of the plenum back

toward the throttle. One millisecond later at t � 2 ms, the expansion
wave has already impinged on the throttle side and reflected also as an
expansion wave, almost reaching the compressor interface, shown as

the green line. Meanwhile, the initial wave inside the compressor

keeps propagating toward the inlet, also shown in the green line. At

t � 3 ms, the wave front has impinged on the interface, moved back
as an expansion wave and reflected back from the throttle side again

propagating into the plenum as an expansionwave, the front ofwhich

is evident as the black line nearing the middle of the plenum. By

t � 4 ms, the front of the black line has already impinged on the
compressor interface, traveled back, and is just about to impinge on

the throttle side, shown as the magenta line. This process continues

with ever so diminishingwave amplitude and gradually decreases the

plenum pressure. While the waves are bouncing in the plenum, they
are of course affecting the flow in the compressor too. From the flow

rate results, it can be seen that at t � 3 ms(black line), the front of the
initial wave has not yet reached the inlet. By t � 4 ms, thewave front
has reached the inlet as evident by the change in flow rate at the inlet
(magenta line).
Figure 11 shows the interval of 45–50 ms following the throttle

switch frompoint 1 to point 2. It shows that the compressor has nearly

Fig. 8 Mass flow rate and static pressure response at 100% speed for
throttling from operating points 1 to 4 showing flow choking at operating
points 3 and 4.

Fig. 9 Time snapshots of pressure wave front from 0 to 1 ms presented
as deviations from the steady state due to throttling frompoint 1 to point 2
(see Fig. 8) toward choke.

Fig. 10 Snapshots ofmass flow rate andpressuredeviations fromsteady
state at different times during 0–5ms following throttling from point 1 to
point 2 (see Fig. 8) toward choke.
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settled at the new operating condition but for small deviation shown

in the flow rate in the plenum. Interestingly, it can be seen that, while

the pressure in the plenum is nearly uniform, the mass flow rate

distribution in the plenum is not fully settled and it oscillates in

fundamental longitudinal acoustic mode having nodes at the choked

throttle on one side and the large area ratio interface on the other side.

From the simulation results for the interval of 90–100 ms after the

throttle switch from point 1 to point 2 shown in Fig. 12, it is seen that

the compressor has reached the new steady state as all lines have

converged.

Simulation results for the scenario following the switch from point

3 to point 4 (see Fig. 8) for the intervals of 0–5 ms and 90–95 ms are

shown in Figs. 13 and 14, respectively. The results are very similar to

the results for the switch between points 1 and 2 discussed above, but

with one difference. In this case, the front half of the compressor

experiences no change in pressure and/or mass flow rate, indicating

the location of the choking point that occurs to be the inlet to stator 1.

Fig. 12 Snapshots ofmass flowrate andpressure deviations fromsteady
state at different times during95–100ms following throttling frompoint 1
to point 2 (see Fig. 8) toward choke.

Fig. 13 Snapshots ofmass flow rate andpressuredeviations fromsteady
state at different times during 0–5ms following throttling from point 3 to
point 4 (see Fig. 8) in choke.

Fig. 14 Snapshots ofmass flow rate andpressuredeviations fromsteady
state at different times during95–100ms following throttling frompoint 3
to point 4 (see Fig. 8) in choke.

Fig. 11 Snapshots ofmass flowrate andpressure deviations fromsteady
state at different times during 45–50ms following throttling from point 1

to point 2 (see Fig. 8) toward choke.
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4. Throttling into a Modal Stall

We turn our attention now to the throttling schedule shown in
Fig. 15. Stall is initiated by gradually changing compressor operation
from negative to positive slope on the compressor characteristics,
allowing longitudinal and circumferential modes to grow. Accord-
ingly, this kind of stall is commonly denoted as modal stall, even
though, strictly speaking, there are nomodes in our mean line model.
In this run, mass flow rate decreases as the throttle is closed in steps
and pressure increases until in the last step the compressor loses
stability, resulting in ever so escalating drop in the pressure and
flow rate.
Figure 16 shows the high-resolution time snapshots of the pressure

structure in the first 1 ms after the throttle step from point 1 to point 2.
It is similar to the previous scenario but for the fact that the waves are
now compression rather than the expansion waves.
Figure 17 shows the corresponding snapshots of thewaves follow-

ing the switching from point 1 to point 2 during the first 5 ms. The
scenario is very similar to the case of throttle opening in the unchoked
side discussed above.We leave it to the reader to follow the back-and-
forth motion of the waves. Also, similar to the response of throttle
opening, at the end of the first 5 ms, the flow through the plenum is
still vastly different from the flow through the compressor. However,
it could be understood that 100 ms later the flow rate through the
plenumperfectlymatcheswith that of the compressor.Note that those
figures are not shown for the sake of brevity.
We now turn to analyze the critical switch from point 3 to point 4

(see Fig. 15) that ends ultimately with a loss of stability. The behavior
during the first 5 ms is shown in Fig. 18. The pressure plot shown in
Fig. 18 is very similar to that shown for the switch from point 1 to
point 2 in Fig. 17. However, in the flow rate plot shown in Fig. 18, the
t � 5 ms trace (cyan line) shows that the flow rate through the

compressor is dropping in an accelerated rate in comparison to that
for the throttle switch from point 1 to point 2 shown in Fig. 17.
Plots of the traces during 6–10 ms after the switch from point 3 to

point 4, shown in Fig. 19, confirm that the flow through the com-
pressor is dropping in ever-increasing fashion, even as the pressure
ratio still increases across the compressor. This divergence ultimately

Fig. 15 Mass flow rate and static pressure response at 100% speed
for throttling from operating points 1 to 4 showing stall between points
3 and 4.

Fig. 16 Time snapshots of pressure wave front 0 to 1 ms presented as
deviations from the steady state during throttling from point 1 to point 2
(see Fig. 15) toward stall.

Fig. 17 Snapshots ofmass flow rate andpressuredeviations fromsteady
state at different times during 0 � 5 ms following throttling from point 1
to point 2 (see Fig. 15) toward stall.

Fig. 18 Snapshots ofmass flow rate andpressuredeviations fromsteady
state at different times during 0–5ms following throttling from point 3 to
point 4 (see Fig. 15) toward stall.
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leads to a flow reversal at t � 49.5 ms corresponding to the begin-

ning of surge (see Fig. 20). Notably, from an examination of the last

millisecond of simulation in the stall process, it can be seen that

pressure in the middle of the compressor is rapidly increasing,

whereas at the back of the compressor, it is rapidly decreasing. This

kind of behavior is commonly observed in real tests, and it is often

inferred as an indication that the compressor stalled somewhere near

the back. However, the inference from test data of “stalled in the

back” can be wrong as illustrated in this simulation example of a
midsection stall. This observation underscores the usefulness of the
developed model as a diagnostic tool for proper interpretation of
test data.
It is important to note that the initial gradual flow divergence

during the first 10 ms is manifested almost uniformly along the
compressor, thus indicating that flow in the compressor responds
mostly as a bulk. This suggests that the wave motion across the
compressor has little to do with the mechanism that is responsible
for the initial divergence. In essence, the behavior of the system
follows more or less the compressor dynamics described by Greit-
zer’s model [4,5]. Accordingly, the loss of stability that occurs once
the overall characteristics of the compressor are near its peak is
associated with the B-parameter, which increases with the plenum
volume. Thus, one may expect that the dynamics of the compressor
would be significantly altered if the plenum is eliminated and a
throttle is attached at the exit of the last stator or in its vicinity. This
indeed was confirmed in our simulations using the developed model.
However, simulation results for the “no plenum” case are not in-
cluded for brevity.

5. Throttling into Spike Stall

The loss of stability discussed so far is manifested when a com-
pressor is transitioned gradually from the negative slope side to the
positive slope slide of its characteristic. Such a situation ismore likely
to happen in a compressor where all the stages are matched so that all
stagesmove toward the individual stage peak pressures together. This
stall type is akin to the “modal stall” discussed by Camp and Day
[21]. However, when the stages are not well matched, it can happen
that an individual stage is well into the left of its peak (positive slope)
while the overall compressor is still on the negative slope side of its
characteristic. In such a case, the so-called spike stall may occur in the
stage that crosses its peak, and it can drag the overall system into stall
even when it is operating in the right side of the global characteristic.
This situation was discussed by Camp and Day [21]. It is expected
that this case leads to a stall process with different dynamics than that
associated with a modal stall process shown in Figs. 15–20.
To simulate the case where a compressor can exhibit loss of

stability due to the so-called spike stall, we introduce a step change
in blade row losses due to incidence if the angle of attack of any blade
row increases above 17 deg. This abrupt change in individual blade
row losses emulates a sudden flow separation,which in turn can cause
an abrupt change in flow dynamic response. The resulting steady-
state characteristic (marked as modified) is shown in Fig. 21. The
inset plots shown in Fig. 21 are the time traces of mass flow rate and
compressor exit pressure as the system is throttled in steps from point
1 to point 2, and then frompoint 2 to point 3. It is notable that the spike
is triggered just to the left of point 3, which is still on the stable
branch. Further, it can be seen that the modified branch point 3′ has a

Fig. 20 Snapshots ofmass flowrate andpressuredeviations fromsteady
state at different times from45msonward following throttling frompoint
3 to point 4 (see Fig. 15) toward stall.

Fig. 21 Mass flow rate and static pressure response at 100% speed for
the case of stall showing loss of stability to the right of peak pressurewhen
stator 4 crosses the set stall angle of attack.

Fig. 19 Snapshots ofmass flowrate andpressure deviations fromsteady

state at different times during 6–10ms following throttling frompoint 3 to
point 4 (see Fig. 15) toward stall.
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negative slope as well, thus opening up the possibility that the system
may not collapse to surge even after a blade row experiences a spike
stall. Since a fully developed spike stall is manifested as a local
rotating perturbation, a compressor can exhibit a limit cycle pressure
oscillation without collapsing to surge. Such cases are reported in
[21]. However, when the jump in the characteristic is large enough, as
it is with the results shown in Fig. 21, the ensuing transient will not
“allow” the compressor to regain stability, thus driving it to surge. It
can be seen thatwhen spike stall is not present, such as the case for the
results shown in Fig. 15, the system reaches a steady state at point 3 in
response to a step change in throttle from point 2. In contrast, when
spike stall is present, such as the case for the results shown in Fig. 21,
the system is unable to reach a steady state at either point 3 or point 3′
as evident from the inset pressure and mass flow rate plots shown
in Fig. 21.
Figure 22 records the pressure and flow distribution snapshots in

short intervals past t � 0.3 s when a step change in throttle is
introduced (see point 2 in Fig. 21). The snapshots with an interval
of 0.1 ms start at 27 ms after the throttle change. From the mass flow
rate plot in Fig. 22a, it can be seen that at 27.5 ms, a small pulse
appears just ahead of stator 4, indicating a spike stall in stator 4.
Subsequently, the pulse progresses as a compression front upstream
of stator 4 while moving downstream as an expansion front, as
evident from the undershoot of the pressure at the back edge of the
pulse. Considering that the location of stalling stage is near the
plenum, the impression of the expansion wave of pressure is all but
unrecognizable once it enters the plenum and travels toward the
throttle opening, but is very evident upstream as the compression
wave moves toward the compressor inlet. Nevertheless, the dramatic
influence on the flow rate is evident at both upstream and downstream
of the stalling stage as the negative flow pulse progresses fast into the
plenum as well as toward the compressor inlet. The results suggest
that an array of stationary pressure sensors in the casing along the
compressor can be used to find the stalling stage, as the sensor that
first detects a sharp pressure jump indicates the stage that drives the
compressor toward loss of stability.

6. Model as a Diagnostic Tool

We next present unsteady simulation results to illustrate how the
developed model may be important as a diagnostic tool. To that end,

we study the case where a compressor crosses to the left side of its
peak pressure before a spike stall is initiated. We revisit the modal
stall case of Fig. 15, after including in the unsteady model, step
changes in losses due to flow separation if any blade row angle of
attack increases above 20 deg. Due to this change, the compressor is
again stable at point 3.As the compressor is transitioning frompoint 3
(i.e., right side of its peak pressure) toward point 4 (i.e., left side of its
peak pressure) in Fig. 15, it gets into a spike stall while it is simulta-
neously undergoing a modal stall.
Figure 23a shows the history of pressure readouts from sensors

located in the casing along the compressor for the time duration
beginning at t � 0.45 s when a step change in throttle is given to
transition the system from point 3 toward point 4 (see Fig. 15). It can
be seen from Fig. 23a that, between 0.45 and 0.47 s, all sensor
readings indicate increasing pressure. Past t � 0.47 s, some sensors
continue recording pressure raise while others record pressure drop,
thus suggesting that one or more blade rows are now beyond their
peak pressures. The gradual changes in pressure readings end
abruptly shortly after t � 0.495 s with much sharper changes at the
end. It is interesting to note that from the simulation results presented
in Fig. 23a, it can be seen that there is a sharp drop in pressure in the
reading of the sensor located at the exit of S4, whereas all the
remaining sensors see a sharp increase in pressure. It is also interest-
ing to note that even those sensors that show a gradual decrease in
pressure almost till the end experience a sharp raise at the end.
Figure 23b shows a zoom-in of the sensor readings during the last
2 ms just before a complete collapse occurs. From Fig. 23b, it can be
seen that at around t � 0.4965 s, the sensor located between R4 and
S4 experiences a sharp pressure jump indicating a spike stall in stator
4. This compression wave travels upstream and is detected by the
S3-R4 sensor, followed by the R3-S3 sensor. At the same time, an
expansion wave moves downstream and is detected by the sensor at
the exit of rotor 4. While superficial analysis of the end game could
suggest that a spike stall of stator 4 drove the compressor to stall, the
reality was that the compressor was already driving itself to stall, and
thus the spike stall did not play any role in the stall triggering. This
example demonstrates the potential use of the developed unsteady
model as a diagnostic tool. The idea here is to simulate the dynamic
behavior of the compressor during the tests and use it to “explain” the
dynamic data provided by the sensors.

Fig. 22 Flow and pressure variation distribution just before the spike
stall.

Fig. 23 Time history of pressure variations at various stages during a
stall event.
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IV. Conclusions

The paper details the development of a quasi-1-D stream-tube-
based dynamic model of unsteady compressible flow along the mean
line of a generic compressor comprising both axial and centrifugal
stages by modeling stage elements as successive diffusers.
Some of the unique features of the developed model include the

following:
1) It models the flow in the respective passages of the cascades

taking into account the stagger of the passages.
2) It has no aerodynamic force term in the momentum equation,

and the entire dynamics of the flow is captured through the kinetic
energy added due to relative rotation between the stages.
3) It has built in loss models that account for, among other things,

losses due to incident angles.
4) It uses novel characteristics-based compact interfaces for com-

munication between the neighboring stage elements that take into
account the turning losses due to incident angles, and also, facilitate
transition into and out of choked conditions of a stage.
A numerical scheme that implemented the model has been shown

to be capable of simulating the progression of sharp compression and
expansion wave fronts. The ability of the scheme has been demon-
strated by predicting the dynamic flow behavior of an industrial four-
stage axial compressor. The results show that the scheme successfully
generates the acoustic impedance that is responsible for choking. In
throttling toward stall, the simulation predicted, as expected, that
with large plenum the compressor loses stability when it is driven
beyond the peak of its characteristics. Further, the model is shown to
be capable of simulating the effect of spike stall in which a compres-
sor stalls at an operating point to the right side (negative slope) of the
peak of its characteristic. Lastly, the numerical scheme has been used
to simulate response of a pressure sensor array in a test where the
compressor experiences a mixed modal and spike stall process.
Simulation results are presented, which underscore the potential of
the developed model as a diagnostic tool that correlates test results
with expected dynamic behavior of a compressor.
The numerical simulation results presented in this paper entailed a

mechanical throttle, emulating a core test. However, practical use of
the developed model extends well beyond this setup. A short list of
potential applications includes 1) dynamic response of the spool and
pressure as function of heat addition in the turbine, 2) effect of high-
frequency pressure oscillations upon the stability of the machine,
3) effects of bulk and distributed volumes on the stability margin of
the compressor, 4) a diagnostic tool, in conjunction with test results,
to find out the process throughwhich a compressor loses stability, and
5) effects of heat transfer between the casing and core flow, particu-
larly during hot engine re-acceleration transients, also known as,
“Bodie” transients.
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